But Can Human Cloning be ever possible?

By Sheikh Umar Ahmad

Shiekh-Umar-Ahmad

Biotechnology in layman’s term is the selection or alteration of living organisms for human use. Though alteration in every other case is a simple approach, but in
the case of Biotechnology, it involves a complex array of processes that require sophisticated technologies driven by extraordinary minds. Though the technology of using living organisms for improving the standard of living dates back to century’s old tradition of preparing curd from milk at commercial level & in other things that were requiring more of manpower than machinery & techniques available at that time. Also, its oldest forms were agriculture and animal husbandry in modifying the natural world to feed and clothe the ever-increasing population. Our ancestors also quickly figured out how to harness yeast to ferment alcohol and leaven bread. More recently, the discovery of penicillin, in 1928, ushered in a new era, the large-scale cultivation of microorganisms to produce antibiotics. But the modern biotechnology revolution really began when scientists learned how to transfer genes from one organism to another, such as adding the growth hormone gene to bacteria & get the desired result as required. Suddenly, it became possible to produce large quantities of pure human hormones, enzymes, antibodies, and other proteins. Many are now used as medicines. But the question arising here is what will the future hold for this ancient technology made new? It is believed that in this field, the past is prologue. Biotechnology will be used on an increasingly large scale, to satisfy our fundamental needs of food, clothing, shelter, fuel, health, and a variety of material objects. Following are some of the core areas in which Biotechnology can lead in the near future, but again the question posed here is can the Human cloning be ever possible, can any person be able to see his exact identical copy derived from him/her only. The answers to all of these questions cannot be given right now, only time will decide how far improved & refined the concept of Biotechnology will emerge out in the future.

Basic needs:
The principal application of biotechnology.


It can be believed that the primary application & focus of this technology will remain to upgrade & to meet the food, clothing, and shelter of the rapidly increasing Human population, the most essential of human needs. Current agricultural methods require too much land, water, fertilizers, and pesticides to sustain the population of the 21st century with its 10 billion additional inhabitants.
Bioengineering will dramatically improve the yield and quality of crops and their resistance to drought, salt, heat, and pests, as well as eliminate the need for environmentally harmful fertilizers. Meanwhile, the nutritional value of foods will dramatically improve and the land area needed to cultivate food, fibers, and wood will shrink.

In the Fuel Industry:
Substituting conventional fuels with Biofuels.

Biofuels powered our past. Traditionally wood and charcoal were used to cook our food and warm our homes. The consumption of plants and animals fueled human and animal labor. For much of our past, no net carbon was released to the atmosphere, but in modern times the use of fossil fuels is causing a dramatic rise in atmospheric carbon levels. That’s because the carbon dioxide in these fuels was removed from the atmosphere hundreds of millions of years ago and safely buried underground, where until recently it remained. Now levels of atmospheric carbon dioxide already exceed those of the last 50 million years of geologic history. Although we cannot predict the full consequences, they are quite likely to be dire. Biotechnology offers & will further work out a way of returning to carbon neutral energy. We will literally be able to grow our liquid fuels. They won’t be like today’s inefficient corn-based ethanol. Instead, they will probably come from saltwater aquatic microorganisms, bacteria, algae, and phytoplankton altered to convert atmospheric carbon dioxide directly into diesel fuel, gasoline, or other useful hydrocarbons. This field of Biotechnology will more or less come under Constructive biology. Thanks to advances in deciphering the entire genetic codes of species, along with the ability to modify those codes, such organisms can serve as the source of carbon for both fuel and oil and coal based polymers and other chemical materials. Our energy future will be expected to be green and safe.

In Nanotechnology:
Scaling down the size but upgrading applications.

The science and biology of very tiny things constitute a field what is called nanotechnology. This will enable humans to create far smaller and more efficient materials. All earthly matter consists of atoms linked together into molecules. Virtually all of the materials that human beings now make comprise billions of atoms and molecules lumped together. In contrast, living systems can build minuscule functional parts, some with structures only a few atoms (or even one atom) thick. Moreover, these nanostructures assemble themselves into precise three-dimensional forms requiring no outside guiding force or hand. Living organisms are proof that nanostructures work. We can follow their lead. Indeed, the 21st century will bring a fundamental transformation of our ability to manipulate the nanoworld of atoms and molecules to our purposes. These new skills will far transcend the chemistry of the past. New generations of complex nanostructures will assemble themselves and aggregate with other nanostructures to create complex forms, which will then aggregate into large macrostructures with new and useful properties. It is too early to predict when this will happen, but it is believed that the principles of biology, aided by biotechnology, will ultimately transform our entire material world.


In Health:
It will remain the primary focus of Biotechnology.

Biotechnology has already brought the ability to make virtually unlimited amounts of human hormones, enzymes and other proteins for use as medicines. But this century will see its deployment far beyond current uses, such as treating diabetics with insulin or giving clotting factors to hemophiliacs. I foresee an era of regenerative medicine, in which a number of technologies will restore normal healthy function to body parts damaged by disease, injured by trauma, or worn out by time. One of those technologies will be gene therapy. Genes that produce normal products will be used to replace faulty inherited genes. Genes that falter over time will be restored to normal function. We also will turn genes on and off to treat cancer, as well as auto-immune and other degenerative diseases. So far, gene therapy has been more challenging than originally hoped, but today’s setbacks will not halt the advent of this powerful new technology. An ultimate goal of regenerative medicine is to rebuild healthy tissues and organs. I believe this will be commonplace by the end of this century. Right now, we can isolate and grow many of the different cell types in our bodies including of muscle, nerve, skin, bone, and cartilage. Some of these cells can already be fashioned into new working tissues and organs, such as bladders, urethras, blood vessels, and heart valves. Eventually, we will be able to regrow almost any organ including the heart, bone, skin, cartilage, the liver, lungs, kidneys, and muscle. We cannot now predict whether we will be able to regrow the brain, but we can strive and hope. Our ability to practice regenerative medicine will get a major boost from the technology of stem cells, which can give rise to every type of cell and body part. Think about what happens when a human egg is fertilized: an adult’s genetic clock is reset to zero, and adult cells give rise to a new embryo and a new child.
Stem cells too remain ever young and can reproduce an entire individual. Stem cells have another advantage over adult cells, they can be produced in very large quantities. Unlike adult cells, which can reproduce only a limited number of times before aging, stem cells may be virtually immortal. I believe that they will be integrated seamlessly into the practice of regenerative medicine, yielding a renewable source of healthy human organs suitable for replacing damaged or diseased ones in any person. One a profound possible consequence of slowing or even stopping the aging process will virtually halt the march of biological time.

Tailpiece: Biotechnology has affected and will continue to affect every aspect of our lives, from the food we eat to the materials we use to the energy we consume, to our health to even whether we live or die. No other single technology has or will have such far-reaching consequences. Herein comes to fore the field of Gene cloning through which different
genes of interest can be cloned in other expression systems like in
E-coli and then transferred again to humans wherein it is defective.
We can also be able to produce full organs through the process of Bio-
printing though still in its infancy of execution. Cloning full genes have developed the inquisitiveness of scientists to clone different animals including of Humans.

Though clones of various animals have been already developed through the intervention of this technology, due to ethical issues, the research on Human cloning is still in its infancy owing to the ban on this research in most of the countries in the world. Some say the Biotechnology will take
humanity by a surprise in wake of its multipotential implications and applications, whereas other things that the advent of this technology will prove disastrous in the long run if the technology is not regulated at grassroots level. Who will be proved wrong & who right, will be decided only after the field of recombinant DNA technology is executed at its full bloom in every field that impacts the existence of Humans. Till anything surprising comes to fore, stay calm and think of a clone of yourself. How to perceive it. For me it is out of imagination right now. Think of yours.

The author is freelance writer, currently working as DST INSPIRE FELLOW & pursuing Doctorate in Biotechnology at CSIR – Indian Institute of Integrative Medicine Jammu, (J&K).

Archivies